Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lai-Jin Tian, ${ }^{\text {a }}$ Yu-Xi Sun, ${ }^{\text {a }}$ Yi-Zhen Gao ${ }^{a}$ and Guo-Ming Yang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.030$
$w R$ factor $=0.081$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(4-Biphenylacetato)tricyclohexyltin(IV)

The Sn atom of the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2}\right)\right]$, is four-coordinate and possesses a distorted tetrahedral geometry.

Comment

Tricyclohexyltin carboxylates, $\left[\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}\right)\right]$, generally have a tetrahedral structure and do not auto-associate into chain structures via carboxylate bridging, due to the crowding of the three bulky cyclohexyl groups at the Sn atom (Chandrasekhar et al., 2002; Tiekink, 1991, 1994).

(I)

4-Biphenylacetic acid is a non-steroidal anti-inflammatory drug (Bundgaard \& Nielsen, 1988) and in its tricyclohexyltin ester, (I), the Sn atom is four-coordinate and possesses a distorted tetrahedral geometry (Fig. 1). The $\mathrm{Sn} \cdots \mathrm{O} 2$ separation of 2.900 (2) \AA is not indicative of a significant interaction between these atoms. The major stereochemical role of atom O 2 is to distort the tetrahedral geometry by opening up the $\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 13$ angle to $121.90(11)^{\circ}$ and reducing the $\mathrm{O} 1-$ $\mathrm{Sn} 1-\mathrm{C} 1$ angle to 93.81 (9). The monodentate mode of coordination of 4-biphenylacetate is reflected in the disparate $\mathrm{O} 1-\mathrm{C} 19$ and $\mathrm{O} 2-\mathrm{C} 19$ bond lengths of 1.292 (4) and 1.206 (4) Å, respectively. The four bond lengths to Sn (Table 1)

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 4 May 2005 Accepted 20 May 2005 Online 28 May 2005
are similar to those found in other reported tricyclohexyltin carboxylates, such as tricyclohexyltin indole-3-acetate (Molloy et al., 1986), trifluoroacetate (Calogero et al., 1980), N-phthaloylglycinate (Ng \& Kumar Das, 1997a) , (N,Ndiethylthiocarbamoylthio)acetate (Ng \& Kumar Das, 1997b) and 2-(4-chlorophenyl)-3-methylbutyrate (Song et al., 2003).

Experimental

Tricyclohexyltin hydroxide ($0.577 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 4-biphenylacetic acid $(0.318 \mathrm{~g}, 1.5 \mathrm{mmol})$ in benzene $(60 \mathrm{ml})$ were refluxed for 6 h with azeotropic removal of water via a Dean-Stark trap. The resulting clear solution was evaporated under vacuum. The white solid obtained, the title compound, was recrystallized from ethanol and crystals of (I) were obtained from a methanol solution of the compound (yield 81.7%, m.p. 351-352 K). Analysis, found: C 66.34, H 7.49%; calculated for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Sn}$: C $66.33, \mathrm{H} 7.65 \%$.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2}\right)\right]} \\
& M_{r}=579.36 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.3181(12) \AA \\
& b=11.6211(15) \AA \\
& c=13.9327(18) \AA \\
& \alpha=87.052(2)^{\circ} \\
& \beta=76.227(2)^{\circ} \\
& \gamma=77.460(2)^{\circ} \\
& V=1430.4(3) \AA^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.758, T_{\text {max }}=0.875$
7734 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.081$
$S=1.05$
5165 reflections
316 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.345 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 885 reflections
$\theta=3.0-22.9^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.32 \times 0.22 \times 0.15 \mathrm{~mm}$

5165 independent reflections
4834 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-14 \rightarrow 9$
$l=-16 \rightarrow 16$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0418 P)^{2}\right. \\
\quad+0.6525 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.93 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Sn} 1-\mathrm{O} 1$	$2.089(2)$	$\mathrm{Sn} 1-\mathrm{C} 7$	$2.165(3)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.162(3)$	$\mathrm{Sn} 1-\mathrm{C} 1$	$2.168(3)$
			$93.81(9)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 13$	$110.51(10)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 1$	$111.80(11)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$103.00(10)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{C} 1$	$111.69(11)$
$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{C} 7$	$121.90(11)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 1$	

H atoms were placed in calculated positions and refined in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier C$)$. Constrained $\mathrm{C}-\mathrm{H}$ distances were 0.93 for aromatic $\mathrm{CH}, 0.97$ for methylene CH_{2} and $0.98 \AA$ for methine CH .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Bundgaard, H. \& Nielsen, N. M. (1988). Int. J. Pharm. 43, 101-110.
Bruker (2002). SADABS, SAINT, SMART and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Calogero, S., Ganis, P., Peruzzo, V. \& Tagliavini, G. (1980). J. Organomet. Chem. 191, 381-390.
Chandrasekhar, V., Nagendran, S. \& Baskar, V. (2002). Coord. Chem. Rev. 235, 1-52.
Molloy, K. C., Purcell, T. G., Hahn, E., Schumann H. \& Zuckerman, J. J. (1986). Organometallics, 5, 85-89.
Ng, S. W. \& Kumar Das, V. G. (1997a). Acta Cryst. C53, 546-548.
Ng, S. W. \& Kumar Das, V. G. (1997b). Acta Cryst. C53, 548-549.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, X., Cahill, C. \& Eng, G. (2003). Appl. Organomet. Chem. 17, 743-744.
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.

